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From a material design perspective, EEE is very complex. Up to 69 elements from the 
periodic table can be found in EEE, including precious metals (e.g. gold, silver, copper, 
platinum, palladium, ruthenium, rhodium, iridium, and osmium), Critical Raw Materials  
(CRM)(7) (e.g. cobalt, palladium, indium, germanium, bismuth, and antimony), and non-
critical metals, such as aluminium and iron. 

Within the paradigm of a circular economy, the mine of e-waste should be considered 
an important source of secondary raw materials. Due to issues relating to primary 
mining, market price fluctuations, material scarcity, availability, and access to 
resources, it has become necessary to improve the mining of secondary resources 
and reduce the pressure on virgin materials. By recycling e-waste, countries  
could at least mitigate their material demand in a secure and sustainable way. 

This report shows that, globally, only 17.4% of e-waste is documented to be formally 
collected and recycled. Collection and recycling rates need to be improved worldwide. 
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On the other hand, the recycling sector is often confronted with high costs of recycling 
and challenges in recycling the materials. For instance, the recovery of some materials 
such as germanium and indium is challenging because of their dispersed use in products, 
and the products are neither designed nor assembled with recycling principles having 
been taken into account.

On the other hand, base metals (e.g. gold) used in certain devices, such as 
mobile phones and PCs, have a relatively high level of concentration: 280 grams 
per ton of e-waste. Methods employed to separate and recycle e-waste can be  
economically viable, especially if carried out manually, where the material losses 
are less than 5% (Deubzer 2007). Separate collection and recycling of e-waste can  
thus be economically viable for products containing high concentrations and  
contents of precious metals. Nevertheless, the recycling rate of most CRMs is still  
very low and can be improved for precious metals by better collection and pre-treatment 
of e-waste.

Chapter 7.  The Potential of E-waste in a Circular Economy

Source: Deubzer et al. 2019
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Overall, the value of selected raw materials(8) contained 
in e-waste in 2019 was equal to approximately $57 
billion USD(9), corresponding to a total of 25 Mt. 

Iron, aluminium, and copper represent the majority 
of the total weight of raw waste materials that 
can be found in e-waste in 2019. These quantities 
and the material value could be recovered only in 
an ideal scenario in which all e-waste generated  
globally is recycled and the recycling of all selected raw 
materials is economically viable or even feasible with 
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By improving e-waste collection and recycling practises 
worldwide, a considerable amount of secondary raw 
materials – precious, critical, and non-critical – could 
be made readily available to re-enter the manufacturing 
process while reducing the continuous extraction of 
new materials. 

The demand of iron, aluminium, and copper for 
the production of new electronics in 2019 was 

approximately 39 Mt. Even in an ideal scenario in 
which all the iron, copper and aluminium resulting from 
e-waste (25 Mt) is recycled, the world would still require 
approximately 14 Mt of iron, aluminium and copper from 
primary resources to manufacture new electronics (11.6 
Mt, 1.4 Mt, and 0.8 Mt, respectively).(10) This indicates 
that the gap between the secondary iron, aluminium 
and copper found in e-waste and their demand 
for the production of new EEE is quite large. This  
is a consequence of the continuous growth of sales of 
EEE. 
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With the current documented formal collection and recycling rate of 17.4%, a potential raw 
material value of $10 billion USD can be recovered from e-waste, and 4 Mt of secondary 
raw materials would become available for recycling. Focusing only on iron, aluminium, 
and copper and comparing emissions resulting from their use as virgin raw materials or 
secondary raw materials, their recycling has helped save up to 15 Mt of CO2 equivalent 
emissions in 2019 (see Annex 2 for details on the methodology).

EEE also contains hazardous substances, usually heavy metalssuch as mercury, cadmium, 
or lead and chemicals such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons 
(HCFCs), and flame retardants. Approximately 71 kt of plastic containing BFR (Brominated 
Flame Retardants) arise from the unaccounted flows of e-waste generated in 2019 
(see Annex 2 for details on the methodology). In particular, BFR are used in appliances 
to reduce the product's flammability, appearing, for example, in outer casings of  

computers, printed wiring boards, connectors, relays, wires, and cables (McPherson, 
Thorpe, and Blake 2004 & Herat 2008). The recycling of plastic containing BFR represents a 
major challenge for e-waste recycling because of the costs related to the separation of plastic 
containing PBDEs and PBBs from other plastic. Recycled plastic with PBDE and PBB content 
higher than 0.1% cannot be used for manufacturing of any products, including EEEs. In most 
cases, compliant recyclers incinereate plastic containing PBDEs and PBBs under controlled 
conditions to avoid the release of dioxins and furans. On the other end, if incineration is not 
carried out in an environmentally sound manner, those substances are likely to pose risks 
to health or the environment. The use of PBDEs and PBBs have been banned in Europe 
(European Parliament 2011). Some of these contaminants have been banned in Europe, as 
risk assessment studies have shown that they are persistent, bioaccumulative, and toxic, 
and can be responsible for kidney damage, several skin disorders, and nervous and immune 
systems and effects to the nervous and immune systems.
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Mercury is used in fluorescent light sources, e.g. in background lights of older flat panel 
displays and TVs, in compact fluorescent lamps (“energy-saving lamps”), fluorescent 
lamps, in measure and control equipment, and in old switches. (Baldé et al. 2018). 
If these appliances are abandoned in open dumpsites as opposed to being properly 
recycled, mercury can enter the food chain and accumulate in living organisms while 
bringing damage to the central nervous system, thyroid, kidneys, lungs, immune system, 
etc (Baldé et al. 2018). A total of 50 t of mercury can be found in the unaccounted flows of 
e-waste generated in 2019 worldwide. 

Chlorofluorocarbons (CFCs) and Hydrochlorofluorocarbons (HCFCs) are present in 
refrigerant circuits and insulating foams of older generations of cooling and freezing 
equipment, such as refrigerators, freezers, and air-conditioning systems. These molecules 
have a long lfespan in the atmosphere. They react with ozone molecules (O3), generating 
molecular oxygen that thins the stratospheric ozone layer (ozone hole). This process 
leads to an increment of the UV radiation that can pass the stratosphere, likely causing 
skin cancers, eye-related diseases, and a weakening of the immune system. The Montreal 
Protocol (adopted in 1987) regulates the production and consumption of manmade 
chemicals known as ozone-depleting substances, which includes the phasing out of CFCs 
and HCFCs. These gases have high global warming potential (GWP). If EEE containing 
these gases is not managed in an environmentally sound manner, refrigerants could be 
emitted into the atmosphere. Estimations show that a total of 98 Mt of CO2 equivalents(11) 
were released from the inferior recycling of undocumented fridges and air conditioners 
(40% in Europe and 82.6% in the rest of the world). Greenhouse gas (GHG) emissions 
from the improperly managed refrigerants estimated to be found in air conditioners 
overtook the emissions from fridges in 2013. In 2019, of the total CO2 equivalents 
estimated to be released into the atmosphere, 73% were from air conditioners and 27% 
were from fridges. This is explained by the fact that refrigerants with high global warming 
potential were used before 1994 (e.g. R-11 and R-12) and until 2017 (R-134a and R-22). 
Since then, the refrigerants have been substituted by others with a substantially lower 
GWP (e.g. R-152a and R-124yf). The decrease of CO2 equivalent emissions, reflecting the 
recent obligations for replacing the refrigerants, will be observed only in the next decades, 
when the new products placed on the market will become waste (see Annex 2 for details 
on the methodology).

The presence of hazardous substances and scarce or valuable materials in e-waste 
makes it necessary to recycle and treat the e-waste in an environmentally sound manner; 
doing so helps avoid the release of such substances into the environment and the losses 
of ecologically and economically valuable materials. Although several pieces of legislation 
have banned the use of some substances and are pushing for them to be replaced by safer 
materials, appliances that were produced in the past and still contain those substances 
must, once discarded, be treated adequately in order to contain the risks that they can 
pose to the environment and health. In addition, new equipment may also still contain 
smaller amounts of those banned substances, due to the fact that they technically cannot 
yet be substituted or eliminated. 

It can be assumed that at least most  e-waste collection, treatment, and disposal in the formal  
sector is legally compliant, thus taking care of the environmental, health, and safety aspects.  
This assumption may not be applicable for treatment and disposal outside the formal 
sector. Non-compliant recycling proves to be a cheaper option than the compliant recycling.  
A recent study by the European Electronics Recyclers Association (EERA) and the United 
Nations University (Magalini and Huisman 2018) shows that a European compliant 
recycler incurs substantially higher costs than a non-compliant recycler. In detail, the 
compliant recyclers based in Europe normally incur technical costs such as costs related 
to treatment, de-pollution, disposal of hazardous fractions, and disposal of non-hazardous 
fractions, as well as the proof of legal compliance, quality, and service level.

The study concludes that the potential cost reductions that can be realised by non-
compliant treatment exceed the normal economic margins of legitimate recyclers, 
applying best available technology and ensuring full compliance, which leads to unfair 
competition.

Small household 
equipment

Large household 
equipment

Cooling and freezing 
equipment

$220 USD 
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$290 USD 
per ton 

$130 USD 
per ton 

Source: Magalini and Huisman 2018
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